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Summary (AD) as well as a more severe autosomal recessive (AR)
form (Gorlin et al. 1969).

Craniometaphyseal dysplasia (CMD) is an osteochon-
So far, only Ç10 patients with AR CMD (MIM

drodysplasia of unknown etiology characterized by hy-
218400) have been described in the literature (Beighton

perostosis and sclerosis of the craniofacial bones associ-
1995). However, nearly 100 patients with AD CMD

ated with abnormal modeling of the metaphyses.
(MIM 123000) have been reported, with many of them

Sclerosis of the skull may lead to asymmetry of the man-
being members of a few large kindreds from the United

dible, as well as to cranial nerve compression, that finally
States (Rimoin et al. 1969), South Africa and England

may result in hearing loss and facial palsy. We have
(Beighton et al. 1979), Mexico (Carnevale et al. 1983),

analyzed a large German kindred with autosomal domi-
and Australia (Taylor and Sprague 1989). Recently, we

nant (AD) CMD and found tight linkage between the
have added a further large AD CMD kindred of German

disorder and microsatellite markers on chromosome 5p
extraction with 24 affected persons in six generations

(maximum two-point LOD score 4.82; u Å 0). Our re-
(Tinschert et al., in press).

sults clearly establish the existence of a locus for AD
The nature of the basic defect is unknown in both AR

CMD on central chromosome 5p (5p15.2-p14.1). This
and AD CMD. Therefore, we performed a genomewide

region overlaps with the mapping interval of the growth
search for the CMD locus in a part of the German kin-

hormone–receptor (GHR) gene (5p14-p12), which is
dred with AD CMD. We report on tight linkage of the

known to be involved in the mitogenic activation of
disease locus to markers on chromosome 5p as well as

osteoblasts. Therefore, we tested the GHR gene as a
exclusion of the most promising positional candidate—

candidate gene. However, recombination events be-
the growth hormone–receptor (GHR) gene.

tween the CMD locus and the GHR gene identified in
two members of this family clearly exclude this candi-

Subjects and Methodsdate.

Family Studies
Introduction Observations are based on the nuclear family of a

larger German AD CMD kindred (Tinschert et al., inThe term ‘‘craniometaphyseal dysplasia’’ (CMD) dates
press). We analyzed 25 living members, including 13from 1954, when Jackson and colleagues reviewed dis-
affected persons in three generations, after obtaining in-orders of osseous modeling. They used this term to de-
formed consent from the subjects (see fig. 1). All mem-note a specific syndrome comprising metaphyseal dys-
bers were clinically characterized, including radiographyplasia with a typical flaring of the metaphyseal ends of
of the skull and femora. An individual was determinedthe long bones and marked cranial hyperostosis and
to be affected if characteristic hyperostosis and sclerosissclerosis (Jackson et al. 1954). Later it was recognized
of the skull was present in conjunction with metaphysealthat CMD may present as a mild autosomal dominant
widening of the distal portions of the femora. There was
no case of discordance between skull and long bone
involvement. All persons with radiologically detectableReceived February 10, 1997; accepted for publication July 23, 1997.

Address for correspondence and reprints: Dr. Peter Nürnberg, Insti- changes were also noticed by their typical facial appear-
tut für Medizinische Genetik, Universitätsklinikum Charité, 10098 ance. The final decision about the disease status was
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0002-9297/97/6104-0020$02.00 examined individuals were used for direct DNA prepa-
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Figure 1 Pedigree of the CMD family, with haplotypes for selected markers on 5p. The panel in the upper-left corner shows the order
of markers. Alleles are number coded, and the disease haplotype is shown in the box. The critical crossovers defining the proximal and distal
boundaries of the CMD candidate region are shown in generation III, persons 6 and 8, respectively. The haplotypes of individual II-3 could
only be tentatively assigned. The broken box suggests a possible recombination event with the disease haplotype (for details, see text).

rations. The affected individual II-2 was also checked morphic intron 9 of the GHR gene was PCR amplified
with primers P4 and P5 and was directly sequenced tofor chromosomal abnormalities; however, a normal

karyotype was found (resolution: ú500 G-bands). All determine the variable nucleotide positions as described
elsewhere (Amselem et al. 1989, 1993). Sequencing reac-human tissue samples used in this project were obtained

with the approval of the institutional review board at tions were performed using a cycle sequencing kit (Ther-
mosequenase, Amersham/USB) with oligonucleotidesthe Charité Medical School of the Humboldt University

in Berlin. TAAAGTTGTAGCTAGTAC-3� and GAAAATGAA-
GATCTATG-3� as sequencing primers for the sense and

DNA Analysis antisense strands, respectively.
High-molecular-weight genomic DNA was isolated

Linkage Analysisfrom whole blood lysate with a phenol/chlorophorm
extraction followed by isopropanol precipitation. Mi- Two-point linkage analyses were performed using the

MLINK program of the FASTLINK package, versioncrosatellites were selected from various genetic maps of
the human genome. For the genomewide screen, mainly 2.1, which uses an improved algorithm for internal cal-

culations but produces identical results as the originalCooperative Human Linkage Center markers (Murray
et al. 1994) at Ç20-cM intervals were used. For the LINKAGE package (Lathrop et al. 1985; Cottingham et

al. 1993; Schaffer et al. 1994). An AD model of diseasefine mapping, markers from the final Généthon human
linkage map were chosen (Dib et al. 1996). Markers inheritance was used, and the disease allele frequency

was set equal to 1005. Equal female and male recombi-were analyzed by PCR and gel electrophoresis according
to the recommendations of the manufacturers. The poly- nation rates were assumed. Because of the variable ex-
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pressivity of the disease phenotype, LOD-score calcula- comprises Ç19 cM (fig. 2) spanning the chromosomal
region 5p15.2-p14.1 (Chumakov et al. 1995). Calcula-tions were performed at penetrances of 1.0 and 0.9. The

allele frequencies for the markers were calculated from tion of pairwise LOD scores under the assumption of a
reduced penetrance of .90 did not significantly changethe typing data of the CMD family (Boehnke 1991).
the data (table 1).

Results Exclusion of the GHR Gene
Linkage to Chromosome 5p The GHR gene harbors several polymorphic nucleo-

tides in intron 9 known to form at least seven differentWe analyzed some 70 microsatellite polymorphisms
haplotypes (Amselem et al. 1989, 1993). We determinedcovering about one half of the human genome until we
these haplotypes and analyzed their segregation in theobtained a significant positive LOD score (Z). Marker
CMD family. Two obligate recombination events wereGATA7C06 (D5S1470) gave maximum LOD score Zmax

identified in individuals III-6 and IV-1. Interestingly,Å 3.14 at a recombination fraction (u) of 0.06, under
these two individuals also exhibit recombinations forthe assumption of an unreduced penetrance (table 1).
marker D5S663 (fig. 1) as well as more proximal mark-Thereafter, a set of ú20 contiguous markers of the 1996
ers, including D5S455 (not shown). Analyses of moreGénéthon human linkage map (Dib et al. 1996) known
distal markers including D5S1993, however, revealedto be linked to D5S1470 according to the Whitehead
only the recombination event in patient III-6 but nomap (Hudson et al. 1995) were analyzed to perform the
longer in subject IV-1. These results place the GHR locusfine mapping of the CMD locus. The maximum of all
proximal to D5S1993, that is, outside the CMD candi-pairwise LOD scores (Zmax Å 4.82 at u Å 0) was ob-
date region, thereby definitely excluding it as a candidatetained for marker AFMa302wc9 at locus D5S1997 (ta-
for CMD (fig. 2).ble 1), because this marker was the most informative

from the CMD gene region. When haplotypes were con-
Discussionstructed, obligate recombination events were noted with

markers at or distal to locus D5S2004 and at or proxi- We have mapped a gene responsible for AD CMD to
chromosome 5p15.2-p14.1 by linkage analysis in a sin-mal to D5S502 (fig. 1). Thus, the CMD candidate region

Table 1

Pairwise Linkage Data

RECOMBINATION FRACTION AT u Å
MARKER AND

PENETRANCE 0 .01 .05 .1 .2 .3 .4 Zmax umax

D5S2004:
1.0 0� 1.84 2.35 2.38 2.05 1.48 .75 2.40 .08
.9 0.74 1.82 2.30 2.31 1.97 1.40 .70 2.34 .07

D5S667:
1.0 3.97 3.92 3.69 3.38 2.68 1.85 .90 3.97 0
.9 3.91 3.85 3.61 3.29 2.58 1.77 .85 3.91 0

D5S1987:
1.0 4.10 4.04 3.79 3.46 2.72 1.88 .91 4.10 0
.9 4.01 3.95 3.69 3.36 2.62 1.79 .86 4.01 0

D5S1997:
1.0 4.82 4.74 4.42 3.99 3.08 2.06 .96 4.82 0
.9 4.61 4.53 4.22 3.81 2.93 1.95 .90 4.61 0

D5S2096:
1.0 4.78 4.70 4.38 3.96 3.05 2.03 .94 4.78 0
.9 4.58 4.50 4.19 3.78 2.90 1.92 .88 4.58 0

D5S411:
1.0 4.12 4.06 3.80 3.47 2.73 1.88 .91 4.12 0
.9 4.02 3.96 3.70 3.37 2.63 1.80 .86 4.02 0

D5S502:
1.0 0� 1.55 2.00 1.97 1.57 .99 .40 2.02 .07
.9 01.25 1.43 1.88 1.86 1.48 .93 .37 1.90 .07

D5S1470:
1.0 0� 2.74 3.14 3.04 2.48 1.70 .81 3.14 .06
.9 0.49 2.54 2.94 2.86 2.33 1.59 .75 2.94 .06
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allelic series, that is, different conditions caused by mu-
tations of the same gene, seem to be quite common
among bone dysplasias (Francomano et al. 1996), we
expected to map the CMD locus to a region already
well known to skeletal geneticists. Surprisingly though,
no skeletal dysplasia has so far been mapped to chromo-
some 5p.

Bone is a dynamic tissue in which the processes of
resorption and formation are integrated through sys-
temic and local interactions to achieve skeletal remodel-
ing and morphogenesis during growth and development.
Three major cell types contribute to the skeleton: chon-
drocytes, which form cartilage; osteoblasts, which de-
posit bone matrix; and osteoclasts, which resorb bone.
The activity and differentiation of osteoblasts and osteo-
clasts are closely coordinated during development as
bone is formed and during growth and adulthood as
bone undergoes continuous remodeling. The latter also
links bone turnover to the endocrine homeostasis of cal-
cium and phosphorus, since the mineralized bone matrix
serves as the major repository for these ions in the body.
Obviously, the complex interactions necessary for nor-
mal bone formation may be impaired by a defect of any
of the many genes that seem to be involved in the process
of bone morphogenesis (Francomano et al. 1996).

The bone changes seen in CMD, cranial hyperostosis
Figure 2 Genetic map of the region containing the CMD locus. and sclerosis and the abnormal modeling of the metaph-
Order of markers and approximate genetic distances are taken from yses, have been attributed to a defective osteoclastic ac-
the final Généthon linkage map (Dib et al. 1996). Only markers ana-

tivity (Cole and Cohen 1988), but at present this view islyzed in the present study are shown. For D5S1470, a new likely
merely speculative. For AR CMD, however, this conceptlocation interval was defined in this study (thick bar), which is based
may be correct, since two affected children have, respec-on the occurrence of recombination events in the CMD family (not

shown). tively, been reported to respond well to therapy with
calcitonin (Fanconi et al. 1988) and calcitrol (Key et al.
1988). Moreover, by use of specific monoclonal anti-
bodies, it could be shown in a third patient that osteo-gle large pedigree of German extraction. The CMD can-

didate region defined in this study is still £19 cM. Un- clast-like cells derived from the bone marrow lacked
expression of the osteoclast-reactive vacuolar protonfortunately, marker D5S2074 was not informative in

this family; hence we were unable to decide whether pump (Yamamoto et al. 1993).
When looking for candidate genes in the AD CMDthe recombination breakpoint in patient III-6 might be

situated distal to this locus, thereby further reducing critical region on chromosome 5p15.2-p14.1, we no-
ticed several genes in the databases that might be in-the candidate region by 3 cM. Furthermore, one might

speculate whether the unaffected individual II-3 has in- volved in the pathological condition. Our prime suspect
was the GHR gene (5p14-p12), because of reports on aherited a recombined haplotype from her affected father

(I-1) with the part distal to D5S416 (Ç8 cM) originating direct stimulating effect of growth hormone on osteo-
blasts mediated by its authentic receptor (Barnard et al.from the disease chromosome. However, it is not possi-

ble to determine whether a recombination occurred or 1991; Morel et al. 1993). Because mutations of the GHR
gene were already known to cause Laron dwarfism (Am-whether the deceased father was uninformative.

The past few years have witnessed a true explosion selem et al. 1989, 1993), we suspected yet another allelic
series also comprising CMD. Now, having excludedin the number of identified genes involved in the human

skeletal dysplasias, thereby dramatically advancing this GHR as the faulty gene in this CMD kindred, we are
going to turn toward the other candidate genes. An ade-particular field (Erlebacher et al. 1995; Francomano et

al. 1996). Emerging themes in the molecular analysis of nylate cyclase was mapped to chromosome 5p15.3-
p15.2 (Stengel et al. 1992). An adenylate cyclase–cou-the skeletal dysplasias include the identification of allelic

series of disorders and the existence of mutational and pled calcitonin receptor is specifically expressed by os-
teoclasts (Lin et al. 1991). The steroid 5-alpha-reduc-genetic heterogeneity in many of these conditions. Since
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